Down‐regulation of Notch‐1 and Jagged‐1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF …

Z Wang, Y Li, S Banerjee, D Kong… - Journal of cellular …, 2010 - Wiley Online Library
Z Wang, Y Li, S Banerjee, D Kong, A Ahmad, V Nogueira, N Hay, FH Sarkar
Journal of cellular biochemistry, 2010Wiley Online Library
Notch signaling is involved in a variety of cellular processes, such as cell fate specification,
differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in
prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐
expressed in metastatic prostate cancer compared to localized prostate cancer or benign
prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer
progression. However, the mechanistic role of Notch signaling and the consequence of its …
Abstract
Notch signaling is involved in a variety of cellular processes, such as cell fate specification, differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐expressed in metastatic prostate cancer compared to localized prostate cancer or benign prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer progression. However, the mechanistic role of Notch signaling and the consequence of its down‐regulation in prostate cancer have not been fully elucidated. Using multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, real‐time RT‐PCR, Western blotting, migration, invasion assay and ELISA, we found that down‐regulation of Notch‐1 or Jagged‐1 was mechanistically associated with inhibition of cell growth, migration, invasion and induction of apoptosis in prostate cancer cells, which was mediated via inactivation of Akt, mTOR, and NF‐κB signaling. Consistent with these results, we found that the down‐regulation of Notch‐1 or Jagged‐1 led to decreased expression and the activity of NF‐κB downstream genes such as MMP‐9, VEGF, and uPA, contributing to the inhibition of cell migration and invasion. Taken together, we conclude that the down‐regulation of Notch‐1 or Jagged‐1 mediated inhibition of cell growth, migration and invasion, and the induction of apoptosis was in part due to inactivation of Akt, mTOR, and NF‐κB signaling pathways. Our results further suggest that inactivation of Notch signaling pathways by innovative strategies could be a potential targeted approach for the treatment of metastatic prostate cancer. J. Cell. Biochem. 109: 726–736, 2010. © 2010 Wiley‐Liss, Inc.
Wiley Online Library