Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease
Michael Meir, … , Jens Waschke, Nicolas Schlegel
Michael Meir, … , Jens Waschke, Nicolas Schlegel
Published July 1, 2019; First published June 17, 2019
Citation Information: J Clin Invest. 2019;129(7):2824-2840. https://doi.org/10.1172/JCI120261.
View: Text | PDF
Categories: Research Article Gastroenterology

Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease

  • Text
  • PDF
Abstract

Impaired intestinal epithelial barrier (IEB) function with loss of desmosomal junctional protein desmoglein 2 (DSG2) is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). While previous studies have reported that glial cell line–derived neurotrophic factor (GDNF) promotes IEB function, the mechanisms are poorly understood. We hypothesized that GDNF is involved in the loss of DSG2, resulting in impaired IEB function as seen in IBD. In the inflamed intestine of patients with IBD, there was a decrease in GDNF concentrations accompanied by a loss of DSG2, changes of the intermediate filament system, and increased phosphorylation of p38 MAPK and cytokeratins. DSG2-deficient and RET-deficient Caco2 cells revealed that GDNF specifically recruits DSG2 to the cell borders, resulting in increased DSG2-mediated intercellular adhesion via the RET receptor. Challenge of Caco2 cells and enteroids with proinflammatory cytokines as well as dextran sulfate sodium–induced (DSS-induced) colitis in C57Bl/6 mice led to impaired IEB function with reduced DSG2 mediated by p38 MAPK–dependent phosphorylation of cytokeratins. GDNF blocked all inflammation-induced changes in the IEB. GDNF attenuates inflammation-induced impairment of IEB function caused by the loss of DSG2 through p38 MAPK–dependent phosphorylation of cytokeratin. The reduced GDNF in patients with IBD indicates a disease-relevant contribution to the development of IEB dysfunction.

Authors

Michael Meir, Natalie Burkard, Hanna Ungewiß, Markus Diefenbacher, Sven Flemming, Felix Kannapin, Christoph-Thomas Germer, Matthias Schweinlin, Marco Metzger, Jens Waschke, Nicolas Schlegel

×

Figure 6

GDNF reduced the disease activity index in murine DSS-induced colitis.

Options: View larger image (or click on image) Download as PowerPoint
GDNF reduced the disease activity index in murine DSS-induced colitis.
(...
(A and B) ELISA-based measurements of GDNF levels in serum (A) and in colon lysates (B) are shown following i.p. application of GDNF in mice (n = 4; Kruskal-Wallis test, ANOVA). DAI (C), stool index (D), colon length (E), and changes of body weight (F) for DSS animals are shown (n = 9 in each group; unpaired t tests for each time point; ordinary 1-way ANOVA).
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts